A Nonparametric EM algorithm for Multiscale Hawkes Processes

نویسندگان

  • Erik Lewis
  • George Mohler
چکیده

Estimating the conditional intensity of a self-exciting point process is particularly challenging when both exogenous and endogenous effects play a role in clustering. We propose maximum penalized likelihood estimation as a method for simultaneously estimating the background rate and the triggering density of Hawkes process intensities that vary over multiple time scales. We compare the accuracy of the algorithm with the recently introduced Model Independent Stochastic Declustering (MISD) algorithm and then use the model to examine self-excitation in Iraq IED event patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Hawkes Processes for Large-Scale Inference

In this paper, we present a framework for fitting multivariate Hawkes processes for large-scale problems, both in the number of events in the observed history n and the number of event types d (i.e. dimensions). The proposed Scalable LowRank Hawkes Process (SLRHP) framework introduces a lowrank approximation of the kernel matrix that allows to perform the nonparametric learning of the d trigger...

متن کامل

A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering

We propose an effective method to solve the event sequence clustering problems based on a novel Dirichlet mixture model of a special but significant type of point processes — Hawkes process. In this model, each event sequence belonging to a cluster is generated via the same Hawkes process with specific parameters, and different clusters correspond to different Hawkes processes. The prior distri...

متن کامل

Exact and approximate EM estimation of mutually exciting hawkes processes

Motivated by the availability of continuous event sequences that trace the social behavior in a population e.g. email, we believe that mutually exciting Hawkes processes provide a realistic and informative model for these sequences. For complex mutually exciting processes, the numerical optimization used for univariate self exciting processes may not provide stable estimates. Furthermore, conve...

متن کامل

Learning Triggering Kernels for Multi-dimensional Hawkes Processes

How does the activity of one person affect that of another person? Does the strength of influence remain periodic or decay exponentially over time? In this paper, we study these critical questions in social network analysis quantitatively under the framework of multi-dimensional Hawkes processes. In particular, we focus on the nonparametric learning of the triggering kernels, and propose an alg...

متن کامل

Modelling Reciprocating Relationships with Hawkes Processes

We present a Bayesian nonparametric model that discovers implicit social structure from interaction time-series data. Social groups are often formed implicitly, through actions among members of groups. Yet many models of social networks use explicitly declared relationships to infer social structure. We consider a particular class of Hawkes processes, a doubly stochastic point process, that is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011